87 research outputs found

    Abortion: A Fetal Viewpoint

    Get PDF

    A Novel Fuzzy-Neural Slack-Diversifying Rule Based on Soft Computing Applications for Job Dispatching in a Wafer Fabrication Factory

    Get PDF
    This study proposes a slack-diversifying fuzzy-neural rule to improve job dispatching in a wafer fabrication factory. Several soft computing techniques, including fuzzy classification and artificial neural network prediction, have been applied in the proposed methodology. A highly effective fuzzy-neural approach is applied to estimate the remaining cycle time of a job. This research presents empirical evidence of the relationship between the estimation accuracy and the scheduling performance. Because dynamic maximization of the standard deviation of schedule slack has been shown to improve performance, this work applies such maximization to a slack-diversifying fuzzy-neural rule derived from a two-factor tailored nonlinear fluctuation smoothing rule for mean cycle time (2f-TNFSMCT). The effectiveness of the proposed rule was checked with a simulated case, which provided evidence of the rule’s effectiveness. The findings in this research point to several directions that can be exploited in the future

    Prompt Neutrino Results from Fermi Lab

    Full text link
    Results from a Fermi lab experiment to study prompt neutrino production are presented. Assuming the prompt neutrinos come from the decay of charmed mesons we find a total DD production cross section of approx. 20 μb/nucleon, in good agreement with previous CERN results. We find a ν/ν ratio and a νe/νμ of approx. 1.0. The energy and pT spectra of the prompt neutrinos are consistent with those expected from DD production. Limits on the production of supersymmetric particles have also been obtained.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87356/2/262_1.pd

    Results from a Fermilab neutrino beam dump experiment

    Full text link
    The flux of prompt neutrinos from a beam dump has been measured in an experiment at the Fermi National Accelerator Laboratory (E613). Assuming that the charm production has a linear dependence on atomic number and varies as (1−‖×‖)5 e−2mT, a model dependent cross section of 27±5μb/nucleon can be derived. For neutrino energies greater than 20 GeV, the flux of electron neutrinos with respect to muon neutrinos is 0.78±0.19. For neutrinos with energy greater than 30 GeV and p⟂ greater than 0.2, the flux of ν̄u compared to νμ is 0.96±0.22.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87363/2/100_1.pd

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure

    Taxonomy of the order Bunyavirales : second update 2018

    Get PDF
    In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).Non peer reviewe

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    Taxonomy of the family Arenaviridae and the order Bunyavirales : update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.Peer reviewe
    corecore